57 330
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Statistics and Probability Question for Emre

Question #380
What is the probability that in a room of n people, at least two have the same birthday?
Expert's answer
It is easier to first calculate the probability P’(n) that all n birthdays are different. It is clear that P(n) is zero when n>365. When n≤365 we will think as follows.

Take one random person from the group and remember his birthday. Then take a second random person, the probability that his birthday does not coincide with the birthday of the first man is (1 – 1/365). Then take the third man, the probability that his birthday does not coincide with the birthdays of the first two men is: (1 – 2/365). Reasoning by analogy, we reach out to the last man, for whom the probability of discrepancy between his birthday and all previous will be: (1 – (n–1)/365). Multiplying all these probabilities, we obtain the probability that all birthdays in the group will be different: P’(n) = 1*(1 – 1/365)*(1 – 2/365)*...*(1 – (n–1)/365)=(365*364*...*(365–n+1))/365n = 365!/(365n*(365-n)!).

The event of at least two of the n persons having the same birthday is complementary to all n birthdays being different. Therefore, its probability P(n) is: P(n) = 1 – P’(n) = 1 – 365!/(365n*(365-n)!)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question