# Answer to Question #7795 in Trigonometry for Addi

Question #7795

Please verify that sin(x) + tan(x)/ 1 + sec(x) = sin(x)

Expert's answer

(sin(x) + tan(x))/( 1 + sec(x)) = sin(x)

(sin(x) +sin(x)/cos(x))/( 1 + 1/cos(x)) = sin(x)

(sin(x)cos(x) +sin(x))/cos(x) /(( cos(x) + 1)/cos(x)) = sin(x)

sin(x)(cos(x) +1)/ /( cos(x) + 1) = sin(x)

sin(x)=sin(x)

(sin(x) +sin(x)/cos(x))/( 1 + 1/cos(x)) = sin(x)

(sin(x)cos(x) +sin(x))/cos(x) /(( cos(x) + 1)/cos(x)) = sin(x)

sin(x)(cos(x) +1)/ /( cos(x) + 1) = sin(x)

sin(x)=sin(x)

Need a fast expert's response?

Submit orderand get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

## Comments

## Leave a comment