65 537
Assignments Done
99,2%
Successfully Done
In October 2018

Answer to Question #273 in Trigonometry for Nick

Question #273
Find the general form of the solutions of the equation x such that sin x = cos 5x

Example: for the equation tanx=1, the solutions can be described by x = pi/4 + n*pi, n is an integer.
Expert's answer
sin x = cos5x
sin x = cos(pi/2 - x)
cos(pi/2 - x) = cos(5x)
cos(pi/2 - x) - cos(5x) = 0
-2sin(( pi/2-x+5x)/2 ) sin ((pi/2-x-5x)/2)=0
-2sin (pi/4+2x) sin (pi/4 -3x)= 0
х=pi*n/2-pi/8 or х=pi/12-pi*n/3, nEZ

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

Submit
Privacy policy Terms and Conditions