i) Capacitance for parallel plate capacitor is given as ,
c=dE0A,A=WL
or c=dE0WL(F)
V=2V1+V3
=2V1+c3c1v1
=(2+d−t2E0WL∗E0ErWLt)V1 )
=V1=2[t+Er(d−t)]Er(d−t)
V3=E(d−t)2t.2[t+Er(d−t)]Er(d−t)
Thus, V1=V2=2(t+Er(d−t)Er(d−t)V,V3=t+Er(d−t)tV
ii) c1=c2=2d−tE0(WL)
c1=c2=d−t2E0WL
c3=tE0ErWL
c91=c11+c21+c31
2E0ErWLd−t+2E0WLd−t+E0ErWLt
Cq1=2E0WLd−t+E0ErWLt
Cq=t+Er(d−t)E0ErWL
iii)V=V1+V2+V3
Q=C2V
∴C1=C2 thus V1=V2
iv) C1=2dE0WL
C2=d−tE0WL
C3=2tE0ErWL
=C2 & C3 are in series
Ceq2=C2+C3C2C3=2(t+Er(d−t)E0ErWL
Ceq2=C1+Ceq1
=2dE0WL+2(t+Er(d−t)E0ErWL
Ceq=2E0WL+[d1+t+Er(d−T)Er]
Comments
Leave a comment