a) The system is linear because if
y1(t)=x1(t−2)+x1(2−t)
y2(t)=x2(t−2)+x2(2−t)
x(t)=αx1(t)+βx2(t)
then the output y(t) corresponding to the input x(t) is
y(t)=x(t−2)+x(2−t)
=(αx1+βx2)(t−2)+(αx1+βx2)(2−t)
=αx1(t−2)+βx2(t−2)+αx1(2−t)+βx2(2−t)
=α(x1(t−2)+x1(2−t))+β(x2(t−2)+x2(2−t))
=αy1(t)+βy2(t)
b) The system is linear because if
y1(t)=t2x1(t−1)
y2(t)=t2x2(t−1)
and x(t) = αx1(t) + βx2(t), then the output y(t) corresponding to the input x(t) is
y(t)=(αx1+βx2)(t)
=α(t2x1(t−1))(t)+β(t2x2(t−1))(t)
Comments
Leave a comment