Answer to Question #63747 in Inorganic Chemistry for Aamir Sharif

Question #63747
How can we draw energy level diagrams in Molecular Orbital Theory
Expert's answer
Although VSEPR and the Valence Bond theory accurately predict bond properties, they fail to fully explain some molecules. The MO theory incorporates the wave character of electrons in developing MO diagrams. MO diagrams predict physical and chemical properties of a molecule such as shape, bond energy, bond length and bond angle. They also provide information in predicting a molecule’s electronic spectra and paramagnetism. The objective of this wiki is to provide readers with the fundamental steps in constructing simple homonuclear and heteronuclear diatomic molecular orbital diagrams. These steps may then be extrapolated to construct more difficult polyatomic diagrams.

Molecular Orbitals
The region an electron is most likely to be found in a molecule. A MO is defined as the combination of atomic orbitals.

Homonuclear Diatomics
Molecules consisting of two identical atoms are said to be homonuclear diatomic, such as: H2, N2, O2, and F2.

Heteronuclear Diatomics
Molecules consisting of two non-identical atoms are said to be heteronuclear diatomic, such as: CO, NO, HF, and LiF.

Bonding and Antibonding Orbitals
Orbitals that are out-of-phase with one of another are "antibonding" orbitals because regions with dense electron probabilities do not merge which destabilizes the molecule. "Bonding" orbitals are less energetic than antibonding atomic orbitals and are in-phase, as depicted in the figure below. Note how the bonding orbitals come together constructively, while the antibonding orbitals do not.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be the first!

Leave a comment

Ask Your question

New on Blog