# Answer to Question #9072 in C++ for tanisly

Question #9072
write using c.In a disordered array of k(m) is the matching items from each group of identical items will leave only one remaining, and removing pursing an array to the beginning
int findKthSmallest(int A[], int m, int B[], int n, int k) {
& assert(m >= 0); assert(n >= 0); assert(k > 0); assert(k <= m+n);
& int i = (int)((double)m / (m+n) * (k-1));
& int j = (k-1) - i;
& assert(i >= 0); assert(j >= 0); assert(i <= m); assert(j <= n);
& // invariant: i + j = k-1
& // Note: A[-1] = -INF and A[m] = +INF to maintain invariant
& int Ai_1 = ((i == 0) ? INT_MIN : A[i-1]);
& int Bj_1 = ((j == 0) ? INT_MIN : B[j-1]);
& int Ai = ((i == m) ? INT_MAX : A[i]);
& int Bj = ((j == n) ? INT_MAX : B[j]);
& if (Bj_1 < Ai && Ai < Bj)
return Ai;
& else if (Ai_1 < Bj && Bj < Ai)
return Bj;
& assert((Ai > Bj && Ai_1 > Bj) ||
(Ai < Bj && Ai < Bj_1));
& // if none of the cases above, then it is either:
& if (Ai < Bj)
// exclude Ai and below portion
// exclude Bj and above portion
return findKthSmallest(A+i+1, m-i-1, B, j, k-i-1);
& else /* Bj < Ai */
// exclude Ai and above portion
// exclude Bj and below portion
return findKthSmallest(A, i, B+j+1, n-j-1, k-j-1);
}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!