Question #102719
0.3kg of air at pressure of 350kN/m2 and a temperature of 35 oC receives heat energy at constant volume until its pressure become 700kN/m2. it then receives heat energy at constant pressure until its volume become 0.2289m3. determine the change of entropy during each process. take Cp = 1.006kJ/kgK and Cv = 0.717kJ/kgK
1
Expert's answer
2020-02-11T09:51:28-0500

δQ=ΔU+pdV=mMCVdT+pdV\delta Q=\Delta U+pdV=\frac{m}{M}C_VdT+pdV




If V=constV=const


δQ=ΔU+pdV=mMCVdT\delta Q=\Delta U+pdV=\frac{m}{M}C_VdT


ΔS1=δQT=(m/M)CVdTT=mMCVlnT2T1=mMCVlnp2p1=0.328.96103717ln700103350103=5148J/K\Delta S_1 =\int\frac{\delta Q}{T}=\int \frac{(m/M)C_VdT }{T}=\frac{m}{M}C_V\ln \frac{T_2}{T_1}=\frac{m}{M}C_V\ln \frac{p_2}{p_1}=\frac{0.3}{28.96\cdot 10^{-3}}\cdot 717\cdot\ln \frac{700\cdot 10^{-3}}{350\cdot 10^{-3}}=5148 J/K




if p=constp=const


δQ=ΔU+pdV=mMCVdT+pdV=mMCpdT\delta Q=\Delta U+pdV=\frac{m}{M}C_VdT+pdV=\frac{m}{M}C_pdT


ΔS2=δQT=(m/M)CpdTT=mMCplnT2T1=mMCplnV2V1\Delta S_2 =\int\frac{\delta Q}{T}=\int \frac{(m/M)C_pdT}{T} = \frac{m}{M}C_p\ln \frac{T_2}{T_1}=\frac{m}{M}C_p\ln \frac{V_2}{V_1}


V1=(m/M)RT1p1=(0.3/0.02896)8.31308350103=0.07575m3V_1=\frac{(m/M)RT_1}{p_1}=\frac{(0.3/0.02896)\cdot 8.31\cdot 308}{350\cdot 10^{3}}=0.07575m^3


ΔS2=mMCplnV2V1=0.30.028961006ln0.22890.07575=11524J/K\Delta S_2 =\frac{m}{M}C_p\ln \frac{V_2}{V_1}=\frac{0.3}{0.02896} \cdot 1006\cdot \ln \frac{0.2289}{0.07575}=11524 J/K


Answer. ΔS1=5148J/K;ΔS2=11524J/K\Delta S_1=5148 J/K; \Delta S_2=11524 J/K








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS