Question #201069

The magnitude of the three forces acting on the plate are T1 = 100 kN, T2 = 80 kN, and T3 = 50 kN. Replace this force system by an equivalent resultant force R. What is the magnitude R of this resultant force?


1
Expert's answer
2021-06-07T08:32:02-0400


The value of T1 is 100 kN.

The value of T2 is 80 kN.

The value of T3 is 50 kN.

Consider the figure



The formula to calculate the unit vector is

u=rru= \frac{r}{|r|}

Here, r is the position vector.

The formula to calculate the force vector is

T=Tu

Here, T is the force.

The formula to calculate the resultant force vector is

TR=T1+T2+T3T_R=T_1+T_2+T_3

The coordinates of the points A, B, C, and P are

A(1,-2,0)

B(2,3,0)

C(-2,3,0)

P(0,0,6)

The position vector for AP, BP and CP are

rAP=1i+2j+6krBP=2i3j+6krCP=2i3j+6kr_{AP}=-1i+2j+6k \\ r_{BP}=-2i-3j+6k \\ r_{CP}=2i-3j+6k

Calculate the force vector at AP.

T1=T1uAP=100×rAPrAP=100×1i+2j+6k(1)2+22+62=10041i+20041j+60041k=15.62i+31.23j+93.7k  kNT_1=T_1u_{AP} \\ = 100 \times \frac{r_{AP}}{|r_{AP}|} \\ = 100 \times \frac{-1i+2j+6k}{\sqrt{(-1)^2+2^2+6^2}} \\ = -\frac{100}{\sqrt{41}}i + \frac{200}{\sqrt{41}}j+ \frac{600}{\sqrt{41}}k \\ = {-15.62i +31.23j+93.7k}\;kN

Calculate the force vector at BP.

T2=T2uBP=80×rBPrBP=80×2i3j+6k(2)2+(3)2+62=1607i2407j+4807k=22.85i34.28j+68.57k  kNT_2=T_2u_{BP} \\ = 80 \times \frac{r_{BP}}{|r_{BP}|} \\ = 80 \times \frac{-2i-3j+6k}{\sqrt{(-2)^2+(-3)^2+6^2}} \\ = -\frac{160}{7}i - \frac{240}{7}j+ \frac{480}{7}k \\ = {-22.85i -34.28j+68.57k} \;kN

Calculate the force vector at CP.

T3=T3uCP=50×rCPrCP=50×2i3j+6k22+(3)2+62=1007i1507j+3007k=14.28i21.43j+42.85k  kNT_3=T_3u_{CP} \\ = 50 \times \frac{r_{CP}}{|r_{CP}|} \\ = 50 \times \frac{2i-3j+6k}{\sqrt{2^2+(-3)^2+6^2}} \\ = \frac{100}{7}i - \frac{150}{7}j+ \frac{300}{7}k \\ = {14.28i -21.43j+42.85k}\;kN

Calculate the resultant force vector.

TR=T1+T2+T3=[(15.62i+31.23j+93.7k)+(22.85i34.28j+68.57k)+(14.28i21.43j+42.85k)]=24.19i24.48j+205.12k  kNT_R=T-1+T_2+T_3 \\ = [(-15.62i +31.23j+93.7k) + (-22.85i -34.28j+68.57k) + (14.28i -21.43j+42.85k)] \\ = {-24.19i-24.48j + 205.12k} \;kN

Calculate the magnitude of the resultant force.

TR=(24.19)2+(24.48)2+(205.12)2=208  kN|T_R| = \sqrt{(-24.19)^2 +(-24.48)^2 +(205.12)^2} \\ = 208 \;kN

Calculate the unit vector of the resultant force.

uR=TRTR=24.19i24.48j+205.12k208=0.116i0.118j+0.986ku_R= \frac{T_R}{|T_R|} \\ = \frac{-24.19i-24.48j + 205.12k}{208} \\ = -0.116i -0.118j +0.986k

The coordinate is (-0.116,-0.118,0.986).

The equivalent force is {-24.19i - 24.48j + 205.12k} kN and the coordinate is (-0.116,-0.118,0.986).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS