Question #119193
three forces pull on object: f₁ = 50-N towards the +x; F₂ = 50-N toward the +y and F₃ = 70-N, 30° below -x. what force will balance the three? [Analythical method]
1
Expert's answer
2020-06-01T14:26:36-0400

Solution.

F1=50N;F_1=50N;

F2=50N;F_2=50N;

F3=70N;F_3=70N;

ϕ=30o;\phi=30^o;

F?;F-?;


F=F1+F2+F3;\overrightarrow{F}=\overrightarrow{F_1}+\overrightarrow{F_2}+\overrightarrow{F_3};

F12=F1+F2;\overrightarrow{F_{12}}=\overrightarrow{F_1}+\overrightarrow{F_2};

Since the forces F1 and F2 are perpendicular, the equivalent of these forces is found by Pythagoras' theorem.

F12=F12+F22;F_{12}=\sqrt{F_1^2+F_2^2};

F12=(50N)2+(50N)2=502N;F_{12}=\sqrt{(50N)^2+(50N)^2}=50\sqrt{2}N;

By the cosine theorem, we find the equivalent module:

F2=F122+F322F12F3cosθF^2=F_{12}^2+F_3^2-2F_{12}F_3cos\theta ;

F2=(502N)2+(70N)22502N70Ncos15o=F^2=(50\sqrt{2}N)^2+(70N)^2-2\sdot50\sqrt{2}N\sdot70N\sdot cos15^o=

=339N2;=339N^2;

F=18.4N;F=18.4N;

F3sinα=Fsinθ;    sinα=F3sinθF;\dfrac{F_3}{sin\alpha}=\dfrac{F}{sin\theta};\implies sin\alpha=\dfrac{F_3sin\theta}{F};


sinα=70N0.258818.4N=0.9845;sin\alpha=\dfrac{70N\sdot 0.2588}{18.4N}=0.9845;

α=80o\alpha=80^o

Equivalent force is directed at an angle of 55o above -x.

Answer: F=18.4NF=18.4N at an angle of 55o above -x.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS