Assume that r=0.041mr=0.041 mr=0.041m and R=0.448mR=0.448mR=0.448m
mgR=mv22+Iω22+mgr=mv22+2/5mr2⋅(v/r)22+mgr=mgR=\frac{mv^2}{2}+\frac{I\omega^2}{2}+mgr=\frac{mv^2}{2}+\frac{2/5mr^2\cdot (v/r)^2}{2}+mgr=mgR=2mv2+2Iω2+mgr=2mv2+22/5mr2⋅(v/r)2+mgr=
=mv22+mv25+mgr=710mv2+mgr=\frac{mv^2}{2}+\frac{mv^2}{5}+mgr=\frac{7}{10}mv^2+mgr=2mv2+5mv2+mgr=107mv2+mgr
gR=710v2+gr→v=107g(R−r)=107⋅9.81⋅(0.448−0.041)=2.39m/sgR=\frac{7}{10}v^2+gr \to v=\sqrt{\frac{10}{7}g(R-r)}=\sqrt{\frac{10}{7}\cdot 9.81\cdot (0.448-0.041)}=2.39 m/sgR=107v2+gr→v=710g(R−r)=710⋅9.81⋅(0.448−0.041)=2.39m/s
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment