Show that, when SI units for μ0 and ϵ0 are entered, the units given by the right-hand side of the equation in the problem above are m/s.
We know that
c=1μ0ϵ0→(1)c=\frac{1}{\sqrt{\mu_0\epsilon_0}}\rightarrow(1)c=μ0ϵ01→(1)
RHS
Unit of
μ0=T×mA\mu_0=\frac{T\times m}{A}μ0=AT×m
ϵ=c2N×m2\epsilon=\frac{c^2}{N\times m^2}ϵ=N×m2c2
A=csecA=\frac{c}{sec}A=secc
μ0=T×sec×mc\mu_0=\frac{T\times sec\times m}{c}μ0=cT×sec×m
Equation (1) put RHS value
c=1T×m×secc×c2N×m2c=\frac{1}{\sqrt{\frac{T\times m \times sec}{c} \times{\frac {c^2}{N\times m^2}}}}c=cT×m×sec×N×m2c21
c=1T×sec×cN×m→(2)c=\frac{1}{\sqrt{\frac{T \times sec\times c}{N\times m}}}\rightarrow(2)c=N×mT×sec×c1→(2)
Now We know that
F=qvBF=qvBF=qvB
v=FqBv=\frac{F}{qB}v=qBF
Unit
v=Nc×T→(3)v=\frac{N}{c\times T}\rightarrow({3})v=c×TN→(3)
Equation (2) and (3) we can written as
c=11v×secmc=\frac{1}{\sqrt{\frac{1}{v}\times \frac{sec}{m}}}c=v1×msec1
1v=secm\frac{1}{v}=\frac{sec}{m}v1=msec
c=11v2c=\frac{1}{\sqrt{\frac{1}{v^2}}}c=v211
c=vc=vc=v
Unit of c=v =m/sec
LHS=RHS
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments