Electric field strength in point A
E = q 4 π ϵ 0 ( 1 r 2 2 − 1 r 1 2 ) E=\frac{q}{4\pi \epsilon_0}\left(\frac{1}{r_2^2}-\frac{1}{r_1^2}\right) E = 4 π ϵ 0 q ( r 2 2 1 − r 1 2 1 ) We may apply the mean value theorem
E = q 4 π ϵ 0 d d r ( 1 r 2 ) ∣ r = ξ ( r 2 − r 1 ) = 1 4 π ϵ 0 2 p ξ 3 E=\frac{q}{4\pi \epsilon_0}\frac{d}{dr} \left(\frac{1}{r^2} \right) \bigg|_{r=\xi}(r_2-r_1)=\frac{1}{4\pi \epsilon_0}\frac{2p}{\xi^3} E = 4 π ϵ 0 q d r d ( r 2 1 ) ∣ ∣ r = ξ ( r 2 − r 1 ) = 4 π ϵ 0 1 ξ 3 2 p where
ξ ∈ [ r 2 , r 1 ] \xi \in [r_2,r_1] ξ ∈ [ r 2 , r 1 ] Dipole is a point particle, hence
ξ = r \xi=r ξ = r where r is a distance between dipole and point A.
So the electric field strength due to dipole of moment p at a distant point r along the axis of the dipole is
E = 1 4 π ϵ 0 2 p r 3 E=\frac{1}{4\pi \epsilon_0}\frac{2p}{r^3} E = 4 π ϵ 0 1 r 3 2 p or in vector form
E ⃗ = 1 4 π ϵ 0 2 p ⃗ r 3 \vec E=\frac{1}{4\pi \epsilon_0}\frac{2\vec p}{r^3} E = 4 π ϵ 0 1 r 3 2 p
Comments