3. Given a frustum of a right circular cone with a slant height of 9ft ., and the radii of bases are 5ft and 7ft. Find:
a. The lateral area
b. Altitude of the frustum
c. The altitude of the entire cone if the cone removed was replaced
Given,
Slant height of right circular cone (l1)=9ft(l_1)=9ft(l1)=9ft
Base radius (r1)=5ft(r_1)= 5ft(r1)=5ft
and (r2)=7ft(r_2)=7ft(r2)=7ft
a) Lateral area of the frustum =π(r2−r1)l1=\pi (r_2-r_1)l_1=π(r2−r1)l1
=3.14(7−5)×9=3.14×2×9=59.52ft2=3.14 (7-5)\times 9 \\ =3.14\times 2\times 9 \\ =59.52ft^2=3.14(7−5)×9=3.14×2×9=59.52ft2
b) Altitude of the frustum
h′=(92−42)=77=8.87fth'=(\sqrt{9^2-4^2})=\sqrt{77}=8.87fth′=(92−42)=77=8.87ft
cos(θ)=r2−r1l1=7−29=29⇒θ=cos−1(29)⇒θ=77.16∘\cos(\theta)=\frac{r_2-r_1}{l_1} \\ =\frac{7-2}{9} \\ =\frac{2}{9}\\ \Rightarrow \theta = \cos^{-1}(\frac{2}{9}) \\ \Rightarrow \theta = 77.16^\circcos(θ)=l1r2−r1=97−2=92⇒θ=cos−1(92)⇒θ=77.16∘
c) Altitude of the cone complete cone
So, tan(θ)=h7\tan(\theta)=\frac{h}{7}tan(θ)=7h
h=tan(77.16)×7=30.7fth=\tan(77.16)\times 7 = 30.7fth=tan(77.16)×7=30.7ft
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments