c o s ( x + π 3 ) − s i n ( x + π 6 ) cos(x+\frac{\pi}{3}) - sin(x+\frac{\pi}{6}) cos ( x + 3 π ) − s in ( x + 6 π )
c o s ( x + π 3 ) = c o s x c o s π 3 − s i n x s i n π 3 cos(x+\frac{\pi}{3})= cosxcos\frac{\pi}{3} - sinxsin\frac{\pi}{3} cos ( x + 3 π ) = cos x cos 3 π − s in x s in 3 π
s i n ( x + π 6 ) = s i n x c o s π 6 + c o s x s i n π 6 sin(x+\frac{\pi}{6})= sinxcos\frac{\pi}{6}+cosxsin\frac{\pi}{6} s in ( x + 6 π ) = s in x cos 6 π + cos x s in 6 π
c o s ( x + π 3 ) − s i n ( x + π 6 ) = cos(x+\frac{\pi}{3}) - sin(x+\frac{\pi}{6})= cos ( x + 3 π ) − s in ( x + 6 π ) = c o s x c o s π 3 − s i n x s i n π 3 cosxcos\frac{\pi}{3} - sinxsin\frac{\pi}{3} cos x cos 3 π − s in x s in 3 π − s i n x c o s π 6 − c o s x s i n π 6 -sinxcos\frac{\pi}{6}-cosxsin\frac{\pi}{6} − s in x cos 6 π − cos x s in 6 π
therefore
c o s x c o s π 3 − s i n x s i n π 3 − s i n x c o s π 6 − c o s x s i n π 6 cosxcos\frac{\pi}{3}-sinxsin\frac{\pi}{3}-sinxcos\frac{\pi}{6}-cosxsin\frac{\pi}{6} cos x cos 3 π − s in x s in 3 π − s in x cos 6 π − cos x s in 6 π
this becomes
1 2 c o s x − 1 2 c o s x − 3 2 s i n x − 3 2 s i n x \frac{1}{2}cosx-\frac{1}{2}cosx-\frac{\sqrt3}{2}sinx-\frac{\sqrt3}{2}sinx 2 1 cos x − 2 1 cos x − 2 3 s in x − 2 3 s in x
0 − 3 s i n x = − 3 s i n x 0-\sqrt3sinx = -\sqrt3 sinx 0 − 3 s in x = − 3 s in x
Comments