We will use the formula for roots of the complex numbers (https://en.wikipedia.org/wiki/De_Moivre%27s_formula#Roots_of_complex_numbers ).
For z = r ( c o s x + i s i n x ) , r > 0 z=r(cos\,x+i\,sin\,x), r>0 z = r ( cos x + i s in x ) , r > 0 , n-th root is given by:
z 1 n = r 1 n ( c o s x + 2 π k n + i s i n x + 2 π k n ) , k = 0 , . . . , n − 1 z^{\frac{1}{n}}=r^{\frac1n}(cos\,\frac{x+2\pi k}{n}+i\,sin\,\frac{x+2\pi k}{n}),\,\,k=0,...,n-1 z n 1 = r n 1 ( cos n x + 2 πk + i s in n x + 2 πk ) , k = 0 , ... , n − 1
Thus, for n=4, and z = c o s 2 π 3 + i s i n 2 π 3 z=cos\,\frac{2\pi}{3}+i\,sin\,\frac{2\pi}{3} z = cos 3 2 π + i s in 3 2 π we receive:
z 1 4 = c o s 2 π 3 + 2 π k 4 + i s i n 2 π 3 + 2 π k 4 = c o s ( π 6 + π k 2 ) + i s i n ( π 6 + π k 2 ) , k = 0 , . . . , 3 z^{\frac{1}{4}}=cos\,\frac{\frac{2\pi}{3}+2\pi k}{4}+i\,sin\,\frac{\frac{2\pi}{3}+2\pi k}{4}=
cos\,(\frac{\pi}{6}+\frac{\pi k}{2})+i\,sin\,(\frac{\pi}{6}+\frac{\pi k}{2}),\,\,k=0,...,3 z 4 1 = cos 4 3 2 π + 2 πk + i s in 4 3 2 π + 2 πk = cos ( 6 π + 2 πk ) + i s in ( 6 π + 2 πk ) , k = 0 , ... , 3
The latter provides the following values:
( z 1 4 ) 0 = c o s π 6 + i s i n π 6 = 3 2 + i 1 2 ≈ 0.87 + i 0.5 (z^{\frac{1}{4}})_0=cos\,\frac{\pi}{6}+i\,sin\,\,\frac{\pi}{6}=\frac{\sqrt{3}}{2}+i\,\frac{1}{2}\approx0.87\,+i\,\,\,0.5 ( z 4 1 ) 0 = cos 6 π + i s in 6 π = 2 3 + i 2 1 ≈ 0.87 + i 0.5
( z 1 4 ) 1 = c o s 2 π 3 + i s i n 2 π 3 = − 1 2 + i 3 2 ≈ − 0.5 + i 0.87 (z^{\frac{1}{4}})_1=cos\,\frac{2\pi}{3}+i\,sin\,\,\frac{2\pi}{3}=-\frac{{1}}{2}+i\,\frac{\sqrt{3}}{2}\approx-0.5+i\,\,\,0.87 ( z 4 1 ) 1 = cos 3 2 π + i s in 3 2 π = − 2 1 + i 2 3 ≈ − 0.5 + i 0.87
( z 1 4 ) 2 = c o s 7 π 6 + i s i n 7 π 6 = − 3 2 − i 1 2 ≈ − 0.87 − i 0.5 (z^{\frac{1}{4}})_2=cos\,\frac{7\pi}{6}+i\,sin\,\,\frac{7\pi}{6}=-\frac{\sqrt{3}}{2}-i\,\frac{1}{2}\approx-0.87\,-i\,\,\,0.5 ( z 4 1 ) 2 = cos 6 7 π + i s in 6 7 π = − 2 3 − i 2 1 ≈ − 0.87 − i 0.5
( z 1 4 ) 3 = c o s 5 π 3 + i s i n 5 π 3 = 1 2 − i 3 2 ≈ 0.5 − i 0.87 (z^{\frac{1}{4}})_3=cos\,\frac{5\pi}{3}+i\,sin\,\,\frac{5\pi}{3}=\frac{{1}}{2}-i\,\frac{\sqrt{3}}{2}\approx0.5-i\,\,\,0.87 ( z 4 1 ) 3 = cos 3 5 π + i s in 3 5 π = 2 1 − i 2 3 ≈ 0.5 − i 0.87
Answer: ( z 1 4 ) 0 = 3 2 + i 1 2 ≈ 0.87 + i 0.5 (z^{\frac{1}{4}})_0=\frac{\sqrt{3}}{2}+i\,\frac{1}{2}\approx0.87\,+i\,\,\,0.5 ( z 4 1 ) 0 = 2 3 + i 2 1 ≈ 0.87 + i 0.5 ; ( z 1 4 ) 1 = − 1 2 + i 3 2 ≈ − 0.5 + i 0.87 (z^{\frac{1}{4}})_1= -\frac{{1}}{2}+i\,\frac{\sqrt{3}}{2}\approx-0.5+i\,\,\,0.87 ( z 4 1 ) 1 = − 2 1 + i 2 3 ≈ − 0.5 + i 0.87 ; ( z 1 4 ) 2 = − 3 2 − i 1 2 ≈ − 0.87 − i 0.5 (z^{\frac{1}{4}})_2= -\frac{\sqrt{3}}{2}-i\,\frac{1}{2}\approx-0.87\,-i\,\,\,0.5 ( z 4 1 ) 2 = − 2 3 − i 2 1 ≈ − 0.87 − i 0.5 ; ( z 1 4 ) 3 = 1 2 − i 3 2 ≈ 0.5 − i 0.87 (z^{\frac{1}{4}})_3= \frac{{1}}{2}-i\,\frac{\sqrt{3}}{2}\approx0.5-i\,\,\,0.87 ( z 4 1 ) 3 = 2 1 − i 2 3 ≈ 0.5 − i 0.87
(final values are rounded to 2 decimal places).
Comments