Question #312596

Assume Binomial Distribution with n = 10 and p = 0.6. Please show your answers to 4 decimal places.

P(X = 4) =  

P(X ≤ 4) =   

P(X < 4) = 

P(X >4) =   

P(X ≥ 4) = 


1
Expert's answer
2022-03-19T08:53:46-0400

n=10  p=0.6  q=1p=0.4n=10 ~~p=0.6~~q=1-p=0.4


(a) P(X=4)P(X=4)

=(nx)×pxqnx=\binom{n}{x}\times p^xq^{n-x}


=(104)×0.640.46=\binom{10}{4}\times0.6^40.4^6


=0.1115=0.1115


(b) P(X4)P(X\le4)

=P(4)+P(3)+P(2)+P(1)+P(0)=P(4)+P(3)+P(2)+P(1)+P(0)

=0.1115+0.0425+0.0106+0.0016+0.0001=0.1115+0.0425+0.0106+0.0016+0.0001


=0.1663=0.1663


(c) P(X<4)P(X<4)

=P(3)+P(2)+P(1)+P(0)=P(3)+P(2)+P(1)+P(0)

=0.0425+0.0106+0.0016+0.0001=0.0425+0.0106+0.0016+0.0001

=0.0548=0.0548


(c) P(X>4)P(X>4)

=1P(X4)=1-P(X\le4)

=10.1663=1-0.1663

=0.8337=0.8337


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS