The outcomes of rolling two dice is given as,
S = { ( 1 , 1 ) ( 2 , 1 ) ( 3 , 1 ) ( 4 , 1 ) ( 5 , 1 ) ( 6 , 1 ) ( 1 , 2 ) ( 2 , 2 ) ( 3 , 2 ) ( 4 , 2 ) ( 5 , 2 ) ( 6 , 2 ) ( 1 , 3 ) ( 2 , 3 ) ( 3 , 3 ) ( 4 , 3 ) ( 5 , 3 ) ( 6 , 3 ) ( 1 , 4 ) ( 2 , 4 ) ( 3 , 4 ) ( 4 , 4 ) ( 5 , 4 ) ( 6 , 4 ) ( 1 , 5 ) ( 2 , 5 ) ( 3 , 5 ) ( 4 , 5 ) ( 5 , 5 ) ( 6 , 5 ) ( 1 , 6 ) ( 2 , 6 ) ( 3 , 6 ) ( 4 , 6 ) ( 5 , 6 ) ( 6 , 6 ) } S=\begin{Bmatrix}
(1,1) & (2,1)&(3,1)&(4,1)&(5,1)&(6,1) \\
(1,2) & (2,2)&(3,2)&(4,2)&(5,2)&(6,2)\\
(1,3)&(2,3)&(3,3)&(4,3)&(5,3)&(6,3)\\
(1,4)&(2,4)&(3,4)&(4,4)&(5,4)&(6,4)\\
(1,5)&(2,5)&(3,5)&(4,5)&(5,5)&(6,5)\\
(1,6)&(2,6)&(3,6)&(4,6)&(5,6)&(6,6)
\end{Bmatrix} S = ⎩ ⎨ ⎧ ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 1 , 5 ) ( 1 , 6 ) ( 2 , 1 ) ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 , 5 ) ( 2 , 6 ) ( 3 , 1 ) ( 3 , 2 ) ( 3 , 3 ) ( 3 , 4 ) ( 3 , 5 ) ( 3 , 6 ) ( 4 , 1 ) ( 4 , 2 ) ( 4 , 3 ) ( 4 , 4 ) ( 4 , 5 ) ( 4 , 6 ) ( 5 , 1 ) ( 5 , 2 ) ( 5 , 3 ) ( 5 , 4 ) ( 5 , 5 ) ( 5 , 6 ) ( 6 , 1 ) ( 6 , 2 ) ( 6 , 3 ) ( 6 , 4 ) ( 6 , 5 ) ( 6 , 6 ) ⎭ ⎬ ⎫
B B B is a random variable representing the number of outcomes with 6.
From the sample space above, the outcomes with 6 are, 1,2,3,4,5,6.
Therefore, the random variable B B B may take on the following values.
b = 1 , 2 , 3 , 4 , 5 , 6 b=1,2,3,4,5,6 b = 1 , 2 , 3 , 4 , 5 , 6
When a 6 turn up, the number of outcomes are 11.
Comments