Question #219421

11 8 15 12 11 12 11 14 15 5 6 11

16 14 13 14 13 9 11 19 12 10 13 5

13 7 3 14 13 16 20 15 5 15 15 5

15 7 9 11 17 18 10 14 9 7 4 15

13 12 16 8 12 12


(a)  Find:

i.              Mean

ii.             Median

iii.            Mode

iv.            Interquartile range

v.             Range

vi.            Variance

vii. Standard deviation


1
Expert's answer
2021-07-22T12:11:26-0400
Xf31415461738293102116126136145157163171181191201f=54\def\arraystretch{1.5} \begin{array}{c:c} X & f \\ \hline 3 & 1 \\ \hdashline 4 & 1\\ \hdashline 5 & 4\\ \hdashline 6 & 1\\ \hdashline 7 & 3\\ \hdashline 8 & 2\\ \hdashline 9 & 3\\ \hdashline 10 & 2\\ \hdashline 11 & 6 \\ \hdashline 12 & 6\\ \hdashline 13 & 6\\ \hdashline 14 & 5\\ \hdashline 15 & 7\\ \hdashline 16 & 3\\ \hdashline 17 & 1\\ \hdashline 18 & 1\\ \hdashline 19 & 1\\ \hdashline 20 & 1\\ \hdashline & \sum f=54\\ \hdashline \end{array}

i.


mean=Xˉ=1ni=1nXi=63054=35311.666667mean=\bar{X}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nX_i=\dfrac{630}{54}=\dfrac{35}{3}\approx11.666667


ii.


X27=12=X28X_{27}=12=X_{28}

median=12median=12

iii.

mode=15,mode=15,

appeared 7 times.


iv.

Lower quartile (XL):9(X_L):9


Upper quartile (XU):15(X_U):15


Interquartile range

IQR=XUXL=159=6IQR=X_U-X_L=15-9=6



v.


Range=203=17Range=20-3=17

vi.


Var(X)=σ2=1ni=1n(XiXˉ)2=83054=41527Var(X)=\sigma^2=\dfrac{1}{n}\displaystyle\sum_{i=1}^n(X_i-\bar{X})^2=\dfrac{830}{54}=\dfrac{415}{27}

15.370370\approx15.370370

vii.


σ=σ2=415273.920506\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{415}{27}}\approx3.920506


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS