Question #218939

A random variable T has a probability density function given by

f(t)={1/2,0<t<1 both inclusive

{x-1/2,1<t<c both inclusive

{0,elsewhere

where c is a positive constant

  1. sketch f(t) hence using geometric shapes or otherwise show that

c=(1+ 51/2)/2

2.Write down the median of T and the mode of T hence describe the skewness of the distribution(Give a reason for your answer)


1
Expert's answer
2021-07-26T06:44:43-0400

1.


f(x)dx=1\displaystyle\int_{-\infin}^{\infin}f(x)dx=1




0112dx+1c(x12)dx=12[x]10+12[x2x]c1\displaystyle\int_{0}^{1}\dfrac{1}{2}dx+\displaystyle\int_{1}^{c}(x-\dfrac{1}{2})dx=\dfrac{1}{2}[x]\begin{matrix} 1 \\ 0 \end{matrix}+\dfrac{1}{2}[x^2-x]\begin{matrix} c \\ 1 \end{matrix}

=12+12(c2c(11))=1=\dfrac{1}{2}+\dfrac{1}{2}(c^2-c-(1-1))=1

c2c1=0c^2-c-1=0


c=1±52c=\dfrac{1\pm\sqrt{5}}{2}

Since c1,c\geq 1, we take c=1+52.c=\dfrac{1+\sqrt{5}}{2}.

f(x)={12,0x1x12,1x1+520,elsewheref(x) = \begin{cases} \dfrac{1}{2}, &0\leq x\leq 1 \\ x-\dfrac{1}{2}, &1\leq x\leq\dfrac{1+\sqrt{5}}{2}\\ 0, & elsewhere \end{cases}



2. The mode of a continuous probability distribution is the point at which the probability density function attains its maximum value.


mode=1+52>1mode=\dfrac{1+\sqrt{5}}{2}>1




F(x)={0,x<012x,0x<1x2212x+12,1x<1+521,x1+52F(x) = \begin{cases} 0, & x<0 \\ \dfrac{1}{2}x, & 0\leq x<1 \\ \dfrac{x^2}{2}-\dfrac{1}{2}x+ \dfrac{1}{2}, &1\leq x<\dfrac{1+\sqrt{5}}{2}\\ 1, & x\geq \dfrac{1+\sqrt{5}}{2}\\ \end{cases}

The median of a continuous probability distribution


F(median)=12F(median)= \dfrac{1}{2}

median=1median= 1

mean=xf(x)dx=mean=\displaystyle\int_{-\infin}^{\infin}xf(x)dx=

=0112xdx+1(1+5)/2x(x12)dx=\displaystyle\int_{0}^{1}\dfrac{1}{2}xdx+\displaystyle\int_{1}^{(1+\sqrt{5})/2}x(x-\dfrac{1}{2})dx

=12[12x2]10+[13x314x2](1+5/21=\dfrac{1}{2}[\dfrac{1}{2}x^2]\begin{matrix} 1 \\ 0 \end{matrix}+[\dfrac{1}{3}x^3-\dfrac{1}{4}x^2]\begin{matrix} (1+\sqrt{5}/2 \\ 1 \end{matrix}

=14+12(1+52)312(1+52)213+14=\dfrac{1}{4}+\dfrac{1}{2}(\dfrac{1+\sqrt{5}}{2})^3-\dfrac{1}{2}(\dfrac{1+\sqrt{5}}{2})^2-\dfrac{1}{3}+\dfrac{1}{4}

=11+55240.92<1=\dfrac{11+5\sqrt{5}}{24}\approx0.92<1

We have a negative (left) skewness


mean<median<modemean<median<mode


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS