Question #169474

Use Cumulative Standardized Normal Probability table to find the area under the standard normal curve between the following values:

a) z=0 and z=2.3

b) z=0 and z=1.68

c) z=0.24 and z=0.33

d) z=-2.75 and z=0

e) z=-2.81 and z=-1.35

f) z=-1.73 and z=0.49


1
Expert's answer
2021-03-09T03:49:44-0500

a) z=0 and z=2.3

P(0<z<2.3)=0.4893P(0<z<2.3)=0.4893


b) z=0 and z=1.68

P(0<z<1.68)=0.4535P(0<z<1.68)=0.4535


c) z=0.24 and z=0.33

P(0.24<z<0.33)=P(0<z<0.33)P(0<z<0.24)P(0.24<z<0.33)=P(0<z<0.33)-P(0<z<0.24)

=0.12930.0948=0.0345=0.1293-0.0948\\=0.0345

d) z=-2.75 and z=0

P(2.75<z<0)=P(0<z<2.75)=0.4970P(-2.75<z<0)=P(0<z<2.75)=0.4970


e) z=-2.81 and z=-1.35

P(2.81<z<1.35)=P(1.35<z<2.81)P(-2.81<z<-1.35)=P(1.35<z<2.81)

=P(0<z<2.81)P(0<z<1.35)=0.49750.4115=0.086=P(0<z<2.81)-P(0<z<1.35)\\=0.4975-0.4115\\=0.086

f) z=-1.73 and z=0.49

P(1.73<z<0.49)=P(0<z<1.73)+P(0<z<0.49)P(-1.73<z<0.49)=P(0<z<1.73)+P(0<z<0.49)

=0.4582+0.1879=0.6451=0.4582+0.1879\\=0.6451



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS