77 357
Assignments Done
99%
Successfully Done
In July 2019

Answer to Question #16583 in Statistics and Probability for Eric

Question #16583
Suppose X1, X2 are iid exponential random variables with mean 2. If we invoke the Central Limit Theorem and assume that Xn-bar is normally distributed, how large must n be to insure that P[|Xn bar - 2| < .01] > .95?
I first standardized this and used Chebychev's inequality to get that (1/n) *( var/epsilon squared) < .05 so (1/n) *( 1/.005 squared) < .05 therfore n>800,000 . However this is the same answer I got when I did not invoke the CLT so I did something wrong somewhere. Can you please point out the mistake?
Expert's answer

Not answered

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

Submit
Privacy policy Terms and Conditions