55 730
Assignments Done
97,1%
Successfully Done
In November 2017
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Statistics and Probability Question for Chris123

Question #10148
A researcher knows that the probability that a person will respond his letter is 10% If the researcher sends a post-paid letter the probability that the reciever will respond is 40%. The researcher sends 5 post-paid letters and 5 non post-paid letters. What is the probability that he recieves less then 3 responses?

Answer should be : 0,5193 How can you calculate this?
Expert's answer

What we have to calculate are the probabilities for 0, 1, and 2 responses. Let's take 0 as the simplest case It will only happen if all five post=paid letters and all five non post-paid letters are answered. By independence it is 0.90^5*0.60^5. Now add to that the probability that only 1 is returned. There are two ways this can happen, It can be a post-paid returned or a non-postpaid. The disjoint events can have their probabilities summed. For the post-paid case this is 0.60^4*(0.40^1*0.90^5 But there are 5 ways that 1 post-paid letter can be answered and only 1 way that all five non-post paid letters will not be answered. So this term is 5 0.60^4 0.40^1 0.90^5 and similarly for one non post paid 5*0.90^4*0.10*0.60^5. Last of all you need to add all the cases where 2 letters are answered. This can happen by having 2 non-post-paid letters returned or 1 non-post-paid and 1 post-paid or 2 post-paid. You and the results for these possibilities to the others to get the final answer. The calculations are done in the same way with the number of combinations to get 2 out of 10 letters selected. When they are both from the post-paid group the factor is number of combinations for choosing 2 out of 5 which is 10. The same factor when both are from the non-post-paid group. When it is one from each there are 5 ways for post-paid to match with any one of the 5 non-post-paid. So that factor is 5x5 = 25.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question