55 636
Assignments Done
97,5%
Successfully Done
In November 2017
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Real Analysis Question for prikshit

Question #4551
Prove that every in fite set is equivalent to one of its proper subsets....
Expert's answer
Let S={a1,a2,a3,…} be a countably infinite subset of an infinite set T. Such a subset can always be constructed by Infinite Set has Countable Subset.
Partition S into S1={a1,a3,a5,…},S2={a2,a4,a6,…}.
We can establish a bijection between S and S1, by letting a(n) and a(2n−1).
We can extend this to a bijection between SU(T\S)=T and S1U(T\S)=T\S2 by assigning each element in T\S to itself.
So we have demonstrated a bijection between T and one of its proper subsets T\S2, which shows that if T is infinite, it is equivalent to one of its proper subsets.

Now, let T0 that strictly belongs to T be a proper subset of T, and f:T→T0 be a bijection. It follows from Subset of Finite Set No Bijection that T must be infinite.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question