55 798
Assignments Done
97,2%
Successfully Done
In December 2017
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Real Analysis Question for Tom

Question #2398
Suppose f is continuously differentiable on [0,1] and f'' (greater than or equal to) 0 on [0,1]. Prove that f(x) (greater than or equal to) f(c) + f'(c)(x-c) for every x,c in [0,1].
Expert's answer
By Taylor theorem in integral from

<img src="/cgi-bin/mimetex.cgi?f%28c%29=f%28x%29+f%27%28c%29%28x-c%29+%5Cint_c%5Ex%20%5Cfrac%7Bf%27%27%28t%29%7D%7B2%7D%28t-c%29%5E2dt" title="f(c)=f(x)+f'(c)(x-c)+\int_c^x \frac{f''(t)}{2}(t-c)^2dt">
Since
<img src="http://latex.codecogs.com/gif.latex?f%27%27%28x%29%20%5Cge%200" title="f''(x) \ge 0"> on the whole interval [0,1], it follows that the integral
lt;img src="http://latex.codecogs.com/gif.latex?%5Cint_c%5Ex%20%5Cfrac%7Bf%27%27%28t%29%7D%7B2%7D%28t-c%29%5E2dt%20%5Cge%200" title="\int_c^x \frac{f''(t)}{2}(t-c)^2dt \ge 0"> ,
hence
<img src="http://latex.codecogs.com/gif.latex?f%28c%29=f%28x%29+f%27%28c%29%28x-c%29%20%5Cge%200" title="f(c)=f(x)+f'(c)(x-c) \ge 0">

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question