64 675
Assignments Done
99,2%
Successfully Done
In September 2018

Answer to Question #17198 in Real Analysis for Ndulamo Kuli

Question #17198
find the fourier sine series for the function f(x)=e^ax for 0<x<pi where a is a constant
Expert's answer
f(x)=a0/2+Sum(Akcos(nx)+Bksin(nx)
a0=1/Pi*Integrate(-Pi, Pi)(e^ax)dx)=2sh(A*Pi)/A

An==1/pi*Integrate(-Pi, Pi)e^ax*cosnxdx=2(ncoshA*pi*sin(n*Pi)+Acos(n*pi)sh(A*pi))/a^2+n^2

An==1/pi*Integrate(-Pi, Pi)e^ax*sinnxdx=2ncosA*pi*sh(n*Pi)+Acosh(n*pi)sin(A*pi))/a^2+n^2

Puting this constants to the series gives the answer

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

Submit
Privacy policy Terms and Conditions