Answer to Question #133626 in Real Analysis for PRATHIBHA ROSE C S

Question #133626
Prove that L^p (mu)is complete both in descrete and infinite case.
1
Expert's answer
2020-10-01T17:29:52-0400

Let’s prove completeness for the classical Banach spaces, say Lp[0,1] where p≥1.

Since the case p=∞ is elementary, we may assume 1≤p<∞. Let [f⋅]∈(Lp)𝐍

 be a Cauchy sequence. Define [g0]:=[f0] and for n>0 define [gn]:=[fn-fn-1]. Then [∑Nn=0gn]=[fN]

 and we see that

∞∑n=0gn∥=∞∑n=0fn-fn-1∥≤???<∞.

Thus it suffices to prove that etc.

It suffices to prove that each absolutely summable series in Lp is summable in Lp  to some element in Lp

Let {fn} be a sequence in Lp with ∑n=1∥fn∥=M<∞, and define functions gn by setting gn⁢(x)=∑k=1n|fk⁢(x)|. From the Minkowski inequality we have

∥gn∥≤∑k=1n∥fk∥≤M.

Hence

∫gnp≤Mp.

For each x, {gn⁢(x)} is an increasing sequence of (extended) real numbers and so must converge to an extended real number g⁢(x). The function g so defined is measurable, and, since gn≥0, we have

∫gp≤Mp

by Fatou’s Lemma. Hence gp is integrable, and g⁢(x) is finite for almost all x.

For each x such that g⁢(x) is finite the series ∑k=1fk⁢(x) is an absolutely summable series of real numbers and so must be summable to a real number s⁢(x). If we set s⁢(x)=0 for those x where g⁢(x)=∞, we have defined a function s which is the limit almost everywhere of the partial sums sn=∑k=1nfk. Hence s is measurable. Since |sn⁢(x)|≤g⁢(x), we have |s⁢(x)|≤g⁢(x). Consequently, s is in Lp and we have

|sn⁢(x)-s⁢(x)|p≤2p⁢[g⁢(x)]p.

Since 2p⁢gp is integrable and |sn⁢(x)-s⁢(x)|p converges to 0 for almost all x, we have

∫|sn-s|p→0

by the Lebesgue Convergence Theorem. Thus ∥sn-s∥p→0, whence ∥sn-s∥→0. Consequently, the series {fn} has in Lp the sum s.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS