57 365
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Real Analysis Question for Doll

Question #11324
prove by mathematical induction that 2 times 34^n - 3 times 23^n + 1 is divisible by 726 for all positive integers n.
Expert's answer
Let S(n)=2*34^n-3*23^n+1

For n=1: S(1)=0 is divisible by 726

For n=2: S(2)=726 is divisible by 726

Let us assume S(n) is divisible by 726

S(n+1)=2*34^(n+1)-3*23^(n+1)+1=2*34*34^n-3*23*23^n+1=23(2*34^n-3*23^n)+11*2*34^n+1=23(2*34^n-3*23^n+1)+ +(11*2*34^n-22)=23S(n)+22(34^n-1)=
23S(n)+22*33(34^(n-1)+...+1)=23S(n)+726(34^(n-1)+...+1) is divisible by 726
according to assumption

So by mathematical induction 2*34^n-3*23^n+1 is divisible by 726 for all positive integers n.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question