52 967
Assignments Done
97,8%
Successfully Done
In October 2017
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Geometry Question for maria prettymaths

Question #5792
How to derive Area formula.
Expert's answer
Let's derive area formula for plane objects.
A definite integral of a function can be represented as the signed area of the region bounded by its graph: S = int(f(x))dx from a to b.
We can bound any figure on R² by two real functions f1(x) and f2(x) with x from some interval [a,b]. Then the area of the figure bounded by this functions is
S = int(f1(x))dx from a to b - int(f2(x))dx from a to b = int(f1(x)-f2(x))dx from a to b.
Using obtained formula we can calculate area of any bouded region on R². Let's do it for the [0;1]x[0;2] rectangle for show. Here f1(x) = 2, xє[0;1] and f2(x) = 0, xє[0;1], so
S = int(f1(x)-f2(x))dx from 0 to 1 = int(2-0)dx from 0 to 1 = 2*1 = 2.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question