"y'(x)=\\sum_{n=1}^\\infin na_nx^{n-1}"
"y''(x)=\\sum_{n=2}^\\infin n(n-1)a_nx^{n-2}"
"x\\sum_{n=2}^\\infin n(n-1)a_nx^{n-2}+2\\sum_{n=1}^\\infin na_nx^{n-1}+x\\sum_{n=0}^\\infin a_nx^n=0"
"\\sum_{n=2}^\\infin n(n-1)a_nx^{n-1}+2\\sum_{n=1}^\\infin na_nx^{n-1}+\\sum_{n=0}^\\infin a_nx^{n+1}=0"
"\\sum_{n=2}^\\infin n(n-1)a_nx^{n-1}+2\\sum_{n=1}^\\infin na_nx^{n-1}+\\sum_{n=2}^\\infin a_{n-2}x^{n-1}=0"
"2a_1+\\sum_{n=2}^\\infin [n(n-1)a_n+2na_n+a_{n-2}]x^{n-1}=0"
"a_1=0"
For
"n\\ge2""n(n-1)a_n+2na_n+a_{n-2}=0"
"a_n=-a_{n-2}\/[(n(n-1)+2n]=-a_{n-2}\/[n(n-1)]"
So
"a_3=a_5=a_7=a_9=...=0"
"a_4=-a_2\/20=a_0\/120=a_0\/(2*3*4*5)"
"a_6=-a_4\/42=-a_0\/(2*3*4*5*6*7)"
"y(x)=a_0(1-x^2\/(2*3)+x^4\/(2*3*4*5)-x^6\/(2*3*4*5*6*7)+(-1)^kx^{2k}\/(2k+1)!)"
"y(x)=a_0 \\sum_{k=0}^ \\infin(-1)^kx^{2k}\/(2k+1)!"
Comments
Leave a comment