∂ Q ∂ x = 2 x y + 1 = ∂ P ∂ y \dfrac{\partial Q}{\partial x}=2xy+1=\dfrac{\partial P}{\partial y} ∂ x ∂ Q = 2 x y + 1 = ∂ y ∂ P The system of two differential equations that define the function u ( x , y ) u(x, y) u ( x , y ) is
{ ∂ u ∂ x = x y 2 + y − x ∂ u ∂ y = x 2 y + x \begin{cases}
\dfrac{\partial u}{\partial x}=xy^2+y-x \\ \\
\dfrac{\partial u}{\partial y}=x^2y+x
\end{cases} ⎩ ⎨ ⎧ ∂ x ∂ u = x y 2 + y − x ∂ y ∂ u = x 2 y + x Integrate the first equation over the variable x x x
u = ∫ ( x y 2 + y − x ) d x + φ ( y ) u=\int(xy^2+y-x)dx+\varphi(y) u = ∫ ( x y 2 + y − x ) d x + φ ( y )
= x 2 y 2 2 + x y − x 2 2 + φ ( y ) =\dfrac{x^2y^2}{2}+xy-\dfrac{x^2}{2}+\varphi(y) = 2 x 2 y 2 + x y − 2 x 2 + φ ( y ) Differentiate with respect to y y y
∂ u ∂ y = x 2 y + x + φ ′ ( y ) = x 2 y + x \dfrac{\partial u}{\partial y}=x^2y+x+\varphi'(y) =x^2y+x ∂ y ∂ u = x 2 y + x + φ ′ ( y ) = x 2 y + x
φ ′ ( y ) = 0 \varphi'(y) =0 φ ′ ( y ) = 0
φ ( y ) = − C 2 \varphi(y)=-\dfrac{C}{2} φ ( y ) = − 2 C Then
u = x 2 y 2 2 + x y − x 2 2 − C 2 u=\dfrac{x^2y^2}{2}+xy-\dfrac{x^2}{2}-\dfrac{C}{2} u = 2 x 2 y 2 + x y − 2 x 2 − 2 C
The general solution of the exact differential equation is given by
x 2 y 2 + 2 x y − x 2 = C x^2y^2+2xy-x^2=C x 2 y 2 + 2 x y − x 2 = C
Comments