Use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform. (Write your answer as a function of t.)
ℒ−1{(s/(s2 + 3s − 4)}
"\\frac{s}{s^2+3s-4}=\\frac{s}{(s-1)(s+4)}="
"=\\frac{A}{s-a}+\\frac{B}{s+4}=\\frac{(A+B)s+4A-B}{(s-1)(s+4)}"
we have a system:
"\\begin{cases}\nA+B=1\\\\\n4A-B=0\n\\end{cases}"
"5A=1"
"A=\\frac{1}{5}"
"B=\\frac{4}{5}"
"\\frac{s}{s^2+3s-4}=\\frac{1}{5(s-1)}+\\frac{4}{5(s+4)}"
"L^{-1}(\\frac{s}{s^2+3s-4})=L^{-1}(\\frac{1}{5(s-1)})+L^{-1}(\\frac{4}{5(s+4)})="
"=\\frac{1}{5}e^t+\\frac{4}{5}e^{-4t}"
Comments
Leave a comment