Question #168619

yp+xq+pq=0


1
Expert's answer
2021-03-04T23:49:28-0500

Given the partial differential equation:


yp+xq+pq=0yp+xq+pq=0

The given equation can be written like:


yp+xq=pq    yq+xp=1yp + xq = – pq \implies \dfrac{y}{q}+\dfrac{x}{p} = -1

OR


(yq)=(1xp)=a(say)\Big(\dfrac{y}{q} \Big) = \Big(-1-\dfrac{x}{p} \Big) = a\quad \text{(say)}



which belong to the category f1(x,p)=f2(y,q)f_1(x,p) = f_2(y,q) where:

yq=a    q=ya;and1xp=a    p=(x1a)\dfrac{y}{q} =a \implies q = \dfrac{y}{a}; \qquad \text{and}\\ -1 - \dfrac{x}{p} = a \implies p = \Big(\dfrac{x}{-1-a} \Big)


for z(x,y):z(x,y):


dz=zxdx+zydydz = \dfrac{\partial z}{\partial x} dx + \dfrac{\partial z}{\partial y} dy\\

dz=(x1a)dx+yadydz =\Big(\dfrac{x}{-1-a} \Big)dx+\dfrac{y}{a}dy

Integrating through, we have:


z=x22(1a)+y22a+c    2z=x2(1a)+y2a+bz = \dfrac{x^2}{2(-1-a)}+\dfrac{y^2}{2a}+c\\ \implies 2z = - \dfrac{x^2}{(-1-a)}+\dfrac{y^2}{a}+b\\

where b=2cb=2c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS