Question #164696

y=c_1e^x+c2e^{2x}+c_3e^{3x},\:y^3-6y^2-6y=0


1
Expert's answer
2021-02-19T15:33:23-0500

y=c1ex+c2e2x+c3e3xy=c1ex+2c2e2x+3c3e3xy=c1ex+4c2e2x+9c3e3xy=c1ex+8c2e2x+27c3e3xy = c_1e^x + c_2e^{2x} +c_3e^{3x}\\ y' = c_1e^x + 2c_2e^{2x} +3c_3e^{3x} \\ y'' = c_1e^x + 4c_2e^{2x} +9c_3e^{3x}\\ y''' = c_1e^x + 8c_2e^{2x} +27c_3e^{3x}

Substituting into y6y6yy'''-6y''-6y we have

c1ex+8c2e2x+27c3e3x6(c1ex+4c2e2x+9c3e3x)6(c1ex+c2e2x+c3e3x)c_1e^x + 8c_2e^{2x} +27c_3e^{3x}-6(c_1e^x + 4c_2e^{2x} +9c_3e^{3x}) -6(c_1e^x + c_2e^{2x} +c_3e^{3x})=11c1ex22c2e2x33c3e3x=11y0= -11c_1e^x -22 c_2e^{2x} -33c_3e^{3x} = -11y' \neq0

The above equation can only be 0 if y' =0

Otherwise y is not a solution of the given differential equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS