Answer to Question #138207 in Differential Equations for Nikhil Singh

Question #138207
Using the method of vibration of parameters,solve the equation
d^2y/dx^2 +a^2y =secax
1
Expert's answer
2020-10-14T13:53:32-0400

"\\displaystyle \\frac{\\mathrm{d}^2y}{\\mathrm{d}x^2} + a^2y = \\sec(ax)\n\n\\\\ \\textsf{The solution to the above equation is}\n\\\\ y = y_c + y_p \\\\\n\\textsf{where}\\, y_c \\, \\textsf{is the complementary factor and}\n\\\\ y_p\\, \\textsf{ is the particular integral}\n\\\\ \\textsf{The auxiliary equation is} \\,m^2 + a^2 = 0 \\\\\n \n\\begin{aligned}\n (m - ja)(m + ja) &= 0 \\\\ \n\\therefore m &= \\pm ja\n\\end{aligned}\\\\\n\\{\\textsf{where}\\, j\\, \\textsf{is a complex number}\\}\\\\\n\n\\textsf{Recall that if the solution of the auxiliary equation}\\\\\n\n\\textsf{of a second-order differential equation is}\\\\\nm = \\alpha \\pm j\\beta, \\textsf{the general solution is} \\\\\n\ny = e^{\\alpha x}(C_1\\cos{\\beta x} + C_2\\sin{\\beta x})\\\\\n\n\\therefore y_c = C_1\\cos(ax) + C_2\\sin(ax)\\\\\n\n\\textsf{The Wronskian of the two solutions is} \\\\\nW(x) = \\begin{vmatrix} \n\\cos(ax) & \\sin(ax)\\\\ \n\\frac{\\mathrm{d}}{\\mathrm{d}x}(\\cos(ax)) & \\frac{\\mathrm{d}}{\\mathrm{d}x}(\\sin(ax)) \n\\end{vmatrix} = \n\n\\begin{vmatrix} \n\\cos(ax) & \\sin(ax)\\\\\n -a\\sin(ax) & a\\cos(ax)\n \\end{vmatrix} \\\\ \n\n\\begin{aligned}\n&= a\\cos^2(ax) + a\\sin^2(ax)\\\\\n&= a(\\cos^2(ax) + \\sin^2(ax)) \\\\\n&= a\n\\end{aligned}\\\\\n\n\\therefore\\textsf{Our particular solution will be given by}\\\\ \ny_p = V_1(x)\\cos(ax) + V_2(x)\\sin(ax)\\\\\n\n\\textsf{Where}\\, V_1(x) = -\\int \\frac{r(x)\\sin(ax)}{W(x)}\\, \\mathrm{d}x \\, \\textsf{and} \\, V_2(x) = \\int \\frac{r(x)\\cos(ax)}{W(x)} \\, \\mathrm{d}x\\\\\n\n\\begin{aligned} \nV_1(x) = -\\int \\frac{r(x)\\sin(ax)}{W(x)} \\, \\mathrm{d}x \\\\\n&= -\\int \\frac{\\sec(ax)\\sin(ax)}{a}\\, \\mathrm{d}x\\\\\n&= -\\int \\frac{\\tan(ax)}{a}\\, \\mathrm{d}x\\\\\n&= -\\frac{\\ln(\\sec(ax))}{a^2} + C\n\\end{aligned} \\\\\n\n\\begin{aligned} \nV_2(x) &= \\int \\frac{r(x)\\cos(ax)}{W(x)}\\, \\mathrm{d}x \\\\\n&= \\int \\frac{\\sec(ax)\\cos(ax)}{a}\\, \\mathrm{d}x\\\\\n&= \\int \\frac{1}{a}\\, \\mathrm{d}x\\\\\n&= \\frac{x}{a} + C\n\\end{aligned} \\\\\n\n\n\n\\textsf{The constant terms of the integration can be}\n\\\\\\textsf{ignored since we are trying to find a non-constant}\n\\\\\\textsf{solution to the differential equation}\n\n\\\\ \\begin{aligned}\n\\therefore y &= y_c + y_p \\\\\n&=C_1\\cos(ax) + C_2\\sin(ax) + \\frac{x}{a}\\sin(ax) - \\frac{1}{a^2}\\ln(\\sec(ax))\\cos(ax) \n\\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS