77 934
Assignments Done
Successfully Done
In August 2019

Answer to Question #15754 in Complex Analysis for Emeli

Question #15754
1. Find a harmonic conjugate of the function u(x,y)=cos x cosh y.
2. Let u(x,y)= ln (x^2+y^2) for (x,y) ∈R^2 \ {(0,0)}. Show that, although u is harmonic, there exists no f analytic on C \ {(0,0)} such that u= Re f. [ you must show u is indeed harmonic on the specified domain first]
3.For all a,b,c are complex numbers , we have :
i. a^b*a^c=a^b+c
ii. a^c*b^c=(ab)^c
iii. If a=b, then a^c= b^c
Expert's answer
Unfortunately, your question requires a lot of work and cannot be done for free.
Submit it with all requirements as an assignment to our control panel and we'll assist you.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question

Privacy policy Terms and Conditions