De Moivre's formula is ( c o s ( x ) + i s i n ( x ) ) n = ( c o s ( n x ) + i s i n ( n x ) ) , n ∈ Z (cos(x)+i\,sin(x))^n=(cos(nx)+i\,sin(nx)),\quad n\in{\mathbb{Z}} ( cos ( x ) + i s in ( x ) ) n = ( cos ( n x ) + i s in ( n x )) , n ∈ Z
By applying it, we obtain:
(a) ( c o s ( π 5 ) + i s i n ( π 5 ) ) 10 = c o s ( 2 π ) + i s i n ( 2 π ) = 1 (cos(\frac{\pi}{5})+i\,sin(\frac{\pi}{5}))^{10}=cos(2\pi)+i\,sin(2\pi)=1 ( cos ( 5 π ) + i s in ( 5 π ) ) 10 = cos ( 2 π ) + i s in ( 2 π ) = 1
(b) ( c o s ( π 9 ) + i s i n ( π 9 ) ) − 3 = c o s ( − π 3 ) + i s i n ( − π 3 ) = 1 2 − i 3 2 (cos(\frac{\pi}{9})+i\,sin(\frac{\pi}{9}))^{-3}=cos(-\frac{\pi}{3})+i\,sin(-\frac{\pi}{3})=\frac{1}{2}-i\,\frac{\sqrt{3}}{2} ( cos ( 9 π ) + i s in ( 9 π ) ) − 3 = cos ( − 3 π ) + i s in ( − 3 π ) = 2 1 − i 2 3
(c) ( c o s ( − π 6 ) + i s i n ( − π 6 ) ) − 4 = c o s ( 2 π 3 ) + i s i n ( 2 π 3 ) = − 1 2 + i 3 2 (cos(-\frac{\pi}{6})+i\,sin(-\frac{\pi}{6}))^{-4}=cos(\frac{2\pi}{3})+i\,sin(\frac{2\pi}{3})=-\frac{1}{2}+i\,\frac{\sqrt{3}}{2} ( cos ( − 6 π ) + i s in ( − 6 π ) ) − 4 = cos ( 3 2 π ) + i s in ( 3 2 π ) = − 2 1 + i 2 3
Comments