Given, f(x)=axebx
f(1/4)=1
(a/4)eb/4=1−−−−(1)
Local maximum at x=1/4, that means f′(1/4)=0
f′(x)=abxebx+aebx
f′(1/4)=(ab/4)eb/4+aeb/4=0−−(2)
Solving the 2nd equation,
eb/4(ab/4+a)=0
Now, eb/4=0
So, (ab/4+a)=0
Or, a(b/4+1)=0
Now from equation (1), value of 'a' cannot be zero.
So, (b/4+1)=0
Or, b=−4
Putting the value of 'b' in equation (1),
(a/4)e−1=1
a/4e=1
Or, a=4e
So, a=4e,b=−4
Comments