Question #92836
Trace the curve y^2 = (x +1) (x −1)^2 by showing all the properties you use to trace it.
1
Expert's answer
2019-08-19T08:25:37-0400


The curve y2=(x+1)(x1)2y^2 = (x +1) (x −1)^2 is well defined for

(x+1)(x1)20(x+1)0x1(x +1) (x −1)^2\geq 0 \Rightarrow (x +1)\geq 0 \Rightarrow x \geq -1 \\  


All powers of 𝑦 in the equation are even

(y)2(x+1)(x1)2=y2(x+1)(x1)2(-y) ^2 - (x +1) (x −1)^2= y^2 - (x +1) (x −1)^2  


Therefore, curve is symmetrical about 𝑥- axis.

A curve does not pass through the origin:


A curve does not pass through the origin:

02=(0+1)(01)20=1False0^2 = (0 +1) (0 −1)^2 \\ 0=1- False


Intersection with 𝑥- axis: Put 𝑦 = 0 in the equation of the curve and solve the resulting equation

02=(x+1)(x1)20^2 = (x +1) (x −1)^2

(x+1)=0x1=1(x1)2=0x2=1(x +1)=0 \Rightarrow x_1=-1\\ (x −1)^2=0 \Rightarrow x_2=1

Intersection with 𝑥- axis: 𝑃𝑜𝑖𝑛𝑡s (-1, 0) and (-1, 0).


Intersection with 𝑦- axis: Put 𝑥 = 0 in the equation of the curve and solve the resulting equation:

y2=(0+1)(01)2y2=11y=±1.y^2 = (0 +1) (0 −1)^2\\ y^2 =1*1 \Rightarrow y=\pm 1.

Intersection with y- axis: 𝑃𝑜𝑖𝑛𝑡s (0,-1) and (0,1).


y2=(x+1)(x1)2y^2 = (x +1) (x −1)^2 , x1x \geq -1.


So,


y=±(x+1)(x1)2y = \pm\sqrt{(x +1) (x −1)^2} .


Consider the case


y=(x+1)(x1)2y = \sqrt{(x +1) (x −1)^2} (1)


y=(x+1)x1y = \sqrt{(x +1)} |x −1|


y={(x1)(x+1),if x1(x1)(x+1),if 1x<1y= \begin{cases} (x −1)\sqrt{(x +1)} , &\text{if } x\geq 1\\ - (x −1)\sqrt{(x +1)}, &\text{if } -1\leq x< 1 \end{cases}

First derivative:

dydx={(x+1)+(x1)2(x+1),if x1((x+1)+(x1)2(x+1)),if 1<x<1\frac {dy}{ dx}= \begin{cases} \sqrt{(x +1)}+ \frac {(x −1)}{ 2\sqrt{(x +1)}} , &\text{if } x\geq 1\\ - (\sqrt{(x +1)}+ \frac {(x −1)}{ 2\sqrt{(x +1)}}), &\text{if } -1 < x< 1 \end{cases}


dydx={3x+12x+1,if x13x+12x+1,if 1x<1\frac {dy}{ dx}= \begin{cases} \frac {3x +1}{ 2\sqrt{x +1}} , &\text{if } x\geq 1\\ - \frac {3x +1}{ 2\sqrt{x +1}}, &\text{if } -1\leq x< 1 \end{cases}



If x=13,𝑑𝑦𝑑𝑥=0,x =-\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} = 0,


If x>13,𝑑𝑦𝑑𝑥<0,x> -\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} < 0,  y -decreases,


If 1x<13,𝑑𝑦𝑑𝑥>0-1\leq x< -\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} > 0, y -increases,


x1,𝑑𝑦𝑑𝑥>0x \geq 1 , \frac {𝑑𝑦}{𝑑𝑥} > 0 - y -increases,


In point x = -1/3, the derivative of the function changes the sign from (+) to (-). Therefore, the point x = -1/3 is the maximum point.

 Second derivative


d2ydx2=3x+54(x+1)34\frac {d^2y}{ dx^2}= -\frac {3x+5}{ 4(x+1)^ \frac {3}{ 4}}


d2ydx2={3x+54(x+1)32,if x13x+54(x+1)32,if 1<x<1\frac {d^2y}{ dx^2}=\begin{cases} \frac {3x+5}{ 4(x+1)^ \frac {3}{ 2}} , &\text{if } x\geq 1\\ - \frac {3x+5}{ 4(x+1)^ \frac {3}{2}}, &\text{if } -1< x< 1 \end{cases}



d2ydx2<0,1<x1\frac {d^2y}{ dx^2} < 0 , -1< x \leq 1 - the graph concaves down.


d2ydx2>0,x>1\frac {d^2y}{ dx^2} > 0 , x> 1 - the graph concaves up.


Graph of functions (1) :









Given that curve is symmetrical about 𝑥- axis :







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS