The curve   y 2 = ( x + 1 ) ( x − 1 ) 2 y^2 = (x +1) (x −1)^2 y 2 = ( x + 1 ) ( x − 1 ) 2 is well defined for 
  ( x + 1 ) ( x − 1 ) 2 ≥ 0 ⇒ ( x + 1 ) ≥ 0 ⇒ x ≥ − 1 (x +1) (x −1)^2\geq 0  \Rightarrow (x +1)\geq 0      \Rightarrow x \geq -1   \\ ( x + 1 ) ( x − 1 ) 2 ≥ 0 ⇒ ( x + 1 ) ≥ 0 ⇒ x ≥ − 1 
All powers of 𝑦 in the equation are even
( − y ) 2 − ( x + 1 ) ( x − 1 ) 2 = y 2 − ( x + 1 ) ( x − 1 ) 2 (-y) ^2 - (x +1) (x −1)^2= y^2 - (x +1) (x −1)^2 ( − y ) 2 − ( x + 1 ) ( x − 1 ) 2 = y 2 − ( x + 1 ) ( x − 1 ) 2 
Therefore, curve is symmetrical about 𝑥- axis. 
A curve does not pass through the origin:
A curve does not pass through the origin: 
0 2 = ( 0 + 1 ) ( 0 − 1 ) 2 0 = 1 − F a l s e 0^2 = (0 +1) (0 −1)^2 \\
0=1- False 0 2 = ( 0 + 1 ) ( 0 − 1 ) 2 0 = 1 − F a l se 
Intersection with 𝑥- axis: Put 𝑦 = 0 in the equation of the curve and solve the resulting equation
0 2 = ( x + 1 ) ( x − 1 ) 2 0^2 = (x +1) (x −1)^2 0 2 = ( x + 1 ) ( x − 1 ) 2 
( x + 1 ) = 0 ⇒ x 1 = − 1 ( x − 1 ) 2 = 0 ⇒ x 2 = 1 (x +1)=0 \Rightarrow x_1=-1\\
 (x −1)^2=0 \Rightarrow  x_2=1 ( x + 1 ) = 0 ⇒ x 1  = − 1 ( x − 1 ) 2 = 0 ⇒ x 2  = 1 
Intersection with 𝑥- axis: 𝑃𝑜𝑖𝑛𝑡s (-1, 0) and (-1, 0). 
Intersection with 𝑦- axis: Put 𝑥 = 0 in the equation of the curve and solve the resulting equation:
y 2 = ( 0 + 1 ) ( 0 − 1 ) 2 y 2 = 1 ∗ 1 ⇒ y = ± 1. y^2 = (0 +1) (0 −1)^2\\
 y^2 =1*1 \Rightarrow y=\pm 1. y 2 = ( 0 + 1 ) ( 0 − 1 ) 2 y 2 = 1 ∗ 1 ⇒ y = ± 1. 
Intersection with  y - axis: 𝑃𝑜𝑖𝑛𝑡s (0,-1) and (0,1). 
y 2 = ( x + 1 ) ( x − 1 ) 2 y^2 = (x +1) (x −1)^2 y 2 = ( x + 1 ) ( x − 1 ) 2 x ≥ − 1 x \geq -1 x ≥ − 1 
So,
y = ± ( x + 1 ) ( x − 1 ) 2 y =  \pm\sqrt{(x +1) (x −1)^2} y = ± ( x + 1 ) ( x − 1 ) 2  
Consider the case
y = ( x + 1 ) ( x − 1 ) 2 y =  \sqrt{(x +1) (x −1)^2} y = ( x + 1 ) ( x − 1 ) 2  (1) 
y = ( x + 1 ) ∣ x − 1 ∣ y = \sqrt{(x +1)} |x −1| y = ( x + 1 )  ∣ x − 1∣ 
y = { ( x − 1 ) ( x + 1 ) , if  x ≥ 1 − ( x − 1 ) ( x + 1 ) , if  − 1 ≤ x < 1 y= \begin{cases}
   (x −1)\sqrt{(x +1)} , &\text{if } x\geq 1\\
 - (x −1)\sqrt{(x +1)}, &\text{if }  -1\leq x< 1
\end{cases} y = { ( x − 1 ) ( x + 1 )  , − ( x − 1 ) ( x + 1 )  ,  if  x ≥ 1 if  − 1 ≤ x < 1  
First derivative:
d y d x = { ( x + 1 ) + ( x − 1 ) 2 ( x + 1 ) , if  x ≥ 1 − ( ( x + 1 ) + ( x − 1 ) 2 ( x + 1 ) ) , if  − 1 < x < 1 \frac {dy}{ dx}= \begin{cases}
  \sqrt{(x +1)}+ \frac {(x −1)}{ 2\sqrt{(x +1)}} , &\text{if } x\geq 1\\
 -   (\sqrt{(x +1)}+ \frac {(x −1)}{ 2\sqrt{(x +1)}}), &\text{if } -1 < x< 1
\end{cases} d x d y  = ⎩ ⎨ ⎧  ( x + 1 )  + 2 ( x + 1 )  ( x − 1 )  , − ( ( x + 1 )  + 2 ( x + 1 )  ( x − 1 )  ) ,  if  x ≥ 1 if  − 1 < x < 1  
d y d x = { 3 x + 1 2 x + 1 , if  x ≥ 1 − 3 x + 1 2 x + 1 , if  − 1 ≤ x < 1 \frac {dy}{ dx}= \begin{cases}
 \frac {3x +1}{ 2\sqrt{x +1}} , &\text{if } x\geq 1\\
 -    \frac {3x +1}{ 2\sqrt{x +1}}, &\text{if }  -1\leq x< 1
\end{cases} d x d y  = { 2 x + 1  3 x + 1  , − 2 x + 1  3 x + 1  ,  if  x ≥ 1 if  − 1 ≤ x < 1  
If x = − 1 3 , 𝑑 𝑦 𝑑 𝑥 = 0 , x =-\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} = 0, x = − 3 1  , d x d y  = 0 , 
If  x > − 1 3 , 𝑑 𝑦 𝑑 𝑥 < 0 , x> -\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} < 0, x > − 3 1  , d x d y  < 0 , 
If − 1 ≤ x < − 1 3 , 𝑑 𝑦 𝑑 𝑥 > 0 -1\leq x< -\frac {1}{3}, \frac {𝑑𝑦}{𝑑𝑥} > 0 − 1 ≤ x < − 3 1  , d x d y  > 0 
x ≥ 1 , 𝑑 𝑦 𝑑 𝑥 > 0 x \geq 1 , \frac {𝑑𝑦}{𝑑𝑥} > 0 x ≥ 1 , d x d y  > 0 
In point x = -1/3 , the derivative of the function changes the sign from (+) to (-). Therefore, the point x = -1/3 is the maximum point.
 Second derivative
d 2 y d x 2 = − 3 x + 5 4 ( x + 1 ) 3 4 \frac {d^2y}{ dx^2}= -\frac {3x+5}{ 4(x+1)^ \frac {3}{ 4}} d x 2 d 2 y  = − 4 ( x + 1 ) 4 3  3 x + 5  
d 2 y d x 2 = { 3 x + 5 4 ( x + 1 ) 3 2 , if  x ≥ 1 − 3 x + 5 4 ( x + 1 ) 3 2 , if  − 1 < x < 1 \frac {d^2y}{ dx^2}=\begin{cases}
\frac {3x+5}{ 4(x+1)^ \frac {3}{ 2}} , &\text{if } x\geq 1\\
 -    \frac {3x+5}{ 4(x+1)^ \frac {3}{2}}, &\text{if }  -1<  x< 1
\end{cases} d x 2 d 2 y  = ⎩ ⎨ ⎧  4 ( x + 1 ) 2 3  3 x + 5  , − 4 ( x + 1 ) 2 3  3 x + 5  ,  if  x ≥ 1 if  − 1 < x < 1  
d 2 y d x 2 < 0 , − 1 < x ≤ 1 \frac {d^2y}{ dx^2} < 0  ,  -1< x \leq  1 d x 2 d 2 y  < 0 , − 1 < x ≤ 1 
d 2 y d x 2 > 0 , x > 1 \frac {d^2y}{ dx^2} > 0  ,  x> 1 d x 2 d 2 y  > 0 , x > 1 
Graph of functions (1)  :
Given that curve is symmetrical about 𝑥- axis :
Comments