Question #92144
Differentiate tan^-1((sins-Cosx)/(Sini Cox’s))
1
Expert's answer
2019-07-29T13:12:29-0400
(tan1(sin(x)cos(x)sin(x)cos(x)))=(tan^{-1}(\frac{sin(x)-cos(x)}{sin(x)cos(x)}))'=

(tan1(1cos(x)1sin(x)))=(tan^{-1}(\frac{1}{cos(x)}-\frac{1}{sin(x)}))'=

(using chain rule)


11+(1cos(x)1sin(x))2(1cos(x)1sin(x))=\frac{1}{1+(\frac{1}{cos(x)}-\frac{1}{sin(x)})^2}(\frac{1}{cos(x)}-\frac{1}{sin(x)})'=

11+sin2(x)2sin(x)cos(x)+cos2(x)sin2(x)cos2(x)(1cos(x)1sin(x))=\frac{1}{1+\frac{sin^2(x)-2sin(x)cos(x)+cos^2(x)}{sin^2(x)cos^2(x)}}(\frac{1}{cos(x)}-\frac{1}{sin(x)})'=

11+12sin(x)cos(x)sin2(x)cos2(x)(1cos(x)1sin(x))=\frac{1}{1+\frac{1-2sin(x)cos(x)}{sin^2(x)cos^2(x)}}(\frac{1}{cos(x)}-\frac{1}{sin(x)})'=

sin2(x)cos2(x)sin2(x)cos2(x)+12sin(x)cos(x)(1cos(x)1sin(x))=\frac{sin^2(x)cos^2(x)}{sin^2(x)cos^2(x)+1-2sin(x)cos(x)}(\frac{1}{cos(x)}-\frac{1}{sin(x)})'=

sin2(x)cos2(x)sin2(x)cos2(x)+12sin(x)cos(x)((1cos(x))(1sin(x)))=\frac{sin^2(x)cos^2(x)}{sin^2(x)cos^2(x)+1-2sin(x)cos(x)}((\frac{1}{cos(x)})'-(\frac{1}{sin(x)})')=

sin2(x)cos2(x)sin2(x)cos2(x)+12sin(x)cos(x)((cos(x))cos2(x)(sin(x))sin2(x))=\frac{sin^2(x)cos^2(x)}{sin^2(x)cos^2(x)+1-2sin(x)cos(x)}(\frac{-(cos(x))'}{cos^2(x)}-\frac{-(sin(x))'}{sin^2(x)})=

sin2(x)cos2(x)sin2(x)cos2(x)+12sin(x)cos(x)(sin(x)cos2(x)+cos(x)sin2(x))=\frac{sin^2(x)cos^2(x)}{sin^2(x)cos^2(x)+1-2sin(x)cos(x)}(\frac{sin(x)}{cos^2(x)}+\frac{cos(x)}{sin^2(x)})=

sin2(x)cos2(x)(1sin(x)cos(x))2sin3(x)+cos3(x)sin2(x)cos2(x)=\frac{sin^2(x)cos^2(x)}{(1-sin(x)cos(x))^2}\frac{sin^3(x)+cos^3(x)}{sin^2(x)cos^2(x)}=

(sin(x)+cos(x))(sin2(x)+cos2(x)sin(x)cos(x))(1sin(x)cos(x))2=\frac{(sin(x)+cos(x))(sin^2(x)+cos^2(x)-sin(x)cos(x))}{(1-sin(x)cos(x))^2}=

(sin(x)+cos(x))(1sin(x)cos(x))(1sin(x)cos(x))2=\frac{(sin(x)+cos(x))(1-sin(x)cos(x))}{(1-sin(x)cos(x))^2}=

sin(x)+cos(x)1sin(x)cos(x)\frac{sin(x)+cos(x)}{1-sin(x)cos(x)}

Answer:

sin(x)+cos(x)1sin(x)cos(x)\frac{sin(x)+cos(x)}{1-sin(x)cos(x)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS