The volume will be given by
∬Df(x,y)dA\iint\limits_Df(x,y)dAD∬f(x,y)dA
Here D is the triangle, formed by y = x, y = 1, and the y-axis. z=f(x,y)=1−yz=f(x,y)=1-yz=f(x,y)=1−y
Hence
∬Df(x,y)dA=∫01dy∫0y(1−y)dx=∫01y(1−y)dy=(y22−y33)01=12−13=16\iint\limits_Df(x,y)dA=\int\limits_0^1dy\int\limits_0^y(1-y)dx=\int\limits_0^1y(1-y)dy=\left(\frac{y^2}{2}-\frac{y^3}{3}\right)_0^1=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}D∬f(x,y)dA=0∫1dy0∫y(1−y)dx=0∫1y(1−y)dy=(2y2−3y3)01=21−31=61
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments