2011-10-06T11:04:40-04:00
Show that if a,b>=0; c,d>0; with a/c + b/d > 1 then:
lim[(x,y)->(0,0)] (|x|^a*|y|^b) / (|x|^c+|y|^d) = 0
Thanks!
1
2011-10-18T08:19:33-0400
Denote u = |x|^c& and& v = |y|^d, so & |x|=u^(1/c) and |y|=v^(1/d). Then (x,y) -> (0,0) implies (u,v) -> (0,0) as well, since c,d>0. Therefore & (|x|^a*|y|^b) / (|x|^c+|y|^d) = |u|^(a/c) * |v|^(b/d) / ( u+v ). Now use polar coordinates, so & u = r |cos phi|, & v = r |sin phi| Notice that for any phi we have that |cos phi| + |sin phi| > cos pi/4 = 1/sqrt(2) Hence (|x|^a*|y|^b) / (|x|^c+|y|^d) = |u|^(a/c) * |v|^(b/d) / ( u + v ) = r^(a/c) |cos phi|^a * r^(b/d) |sin phi|^b / (r^c |cos phi| + r^d |sin phi|) = r^(a/c + b/d) |cos phi|^a |sin phi|^b / (r |cos phi| + r |sin phi|) & lt;= r^(a/c + b/d) / r (|cos phi| + |sin phi|) & lt;= sqrt(2) r^(a/c + b/d) / r & lt;= sqrt(2) r^(a/c + b/d - 1) But a/c + b/d > 1, hence r^(a/c + b/d - 1) -> 0 when r->0. lim[(x,y)->(0,0)] (|x|^a*|y|^b) / (|x|^c+|y|^d) <= lim[(x,y)->(0,0)]& sqrt(2) r^(a/c + b/d - 1) = 0
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments