63 816
Assignments Done
99,5%
Successfully Done
In August 2018

Answer to Question #3633 in Calculus for noor

Question #3633
What is the integrate of

∫ e (x)^1/2 dx
Expert's answer
<img src="/cgi-bin/mimetex.cgi?%5Cint%7Be%5E%7B%5Csqrt%7Bx%7D%7D%20dx%7D%20=%20[%5Csqrt%7Bx%7D%20=%20t]%20=%20%5Cint%7Be%5Et%20dt%5E2%7D%20=%202%20%5Cint%7Bt%20e%5Et%20dt%7D%20=%20t%20e%5Et%20-%20%5Cint%7B%20e%5Et%20dt%7D%20=%20te%5Et%20-%20e%5Et%20=%20e%5Et%20%28t-1%29%20=%20e%5E%7B%5Csqrt%7Bx%7D%7D%28%5Csqrt%7Bx%7D%20-1%29" title="\int{e^{\sqrt{x}} dx} = [\sqrt{x} = t] = \int{e^t dt^2} = 2 \int{t e^t dt} = t e^t - \int{ e^t dt} = te^t - e^t = e^t (t-1) = e^{\sqrt{x}}(\sqrt{x} -1)">

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

Submit
Privacy policy Terms and Conditions