55 793
Assignments Done
97,2%
Successfully Done
In December 2017
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Calculus Question for Kyle

Question #23914
Can you please help me evaluate this indefinite integral?

∫ [1/(x√[(x^2)-4])dx]

I tried to do it and I got an answer of 1/2 arcsec(x/2) but I know that that's probably wrong because I used a sketchy process to get it to that.

I thought it might just be a special integral that I'm supposed to look up, but I don't have my book with the list of them with me right now and I can't find this specific type of integral listed anywhere on the internet.

Here's what I did:

∫ [1/(x√[(x^2)-4])dx]

∫ dx / (x √[ 4( [(x^2)/4] - 1)])

∫ dx / [2x √( [(x^2)/4] - 1)]

∫ (1/2) * {dx / [ x √( [(x/2)^2] - 1) ] } ....... Let u = x/2, du = 1/2dx, dx=2du

∫ (1/2) * {2du / (x √[ (u^2) - 1] ) }

∫ (1/2) * {du / ( [x/2] √[ (u^2) - 1] ) } ........ Take out constant multiple of 1/2

(1/2) ∫ {du / ( [x/2] √[ (u^2) - 1] ) } .......... *Sketchy Part* I assume (x/2) is equal to |x/2| and then use trig properties to take { } and turn it into arcsec

(1/2) arcsec(u)

(1/2) arcsec(x/2)

Is this somehow right?
Expert's answer

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question