Question #205438

3) The mean value theorem for differentiation states that if f(x) is continuous on a closed

interval [a,b] and differentiable on the open interval (a,b), then there exist a number c

in (a,b) such that


f'c=f(b)-f(a)/b-a


If f (x) =5x^2+ 3x 2 , find the value of c in the interval (2,4) that satisfies the above

theorem.


4)The mean value theorem for Differentiation states that if f(x) is differentiable on (a, b)and

continuous on [a, b], then there is at least one point c in (a, b) where f'(c)=f(b)-f(a)/b-a

Find the value of c that satisfies the theorem for the function f(x) = x 6 + in the interval [-2,

10].


1
Expert's answer
2021-06-11T10:11:14-0400

3)f(x)=5x2+3x23)f(x)=5x^2+3x^2

f(c)=f(b)f(a)baf(c)=\frac{f(b)-f(a)}{b-a} where a=2,b=4a=2,b=4

f(c)=f(4)f(2)44=f(4)f(2)2f'(c)= \frac{f(4)-f(2)}{4-4}=\frac{f(4)-f(2)}{2}

f(4)=542+342=128f(4)=5*4^2+3*4^2=128

f(2)=522+322=32f(2)=5*2^2+3*2^2=32

f(c)=c(5c2+3c2)f(c)=c-(5c^2+3c^2)

f(c)=ddc(c5c23c2)f'(c)= \frac{d}{dc}(c-5c^2-3c^2)

=dcdcd5c2dcd3c2dc=\frac{dc}{dc}-\frac{d5c^2}{dc}-\frac{d3c^2}{dc}

=110c6c=1-10c-6c

110c6c=1283221-10c-6c=\frac{128-32}{2}

116c=481-16c=48

c=48116= 2.9375c=\frac{48-1}{-16}= \space -2.9375


4) f(x)=x6f(x)=x^6

f(c)=f(b)f(a)baf'(c)=\frac{f(b)-f(a)}{b-a}

Where a=2a=-2

b=10b=10

f(c)=f(10)f(2)102f'(c)=\frac{f(10)-f(-2)}{10-2}

f(10)=106f(10)=10^6

f(2)=26f(-2)=-2^6

f(c)=ddc(cc6)f'(c)=\frac{d}{dc}(c-c^6)


=dcdcdc6dc=\frac{dc}{dc}- \frac{dc^6}{dc}


=16c5=1-6c^5

16c5=10+6+26121-6c^5=\frac{10^{+6}+2^6}{12}

c=6.73810c=-6.73810



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS