Solve equations ∇f= λ ∇g and g(x,y)=1 using Lagrange multipliers Constraint:
g ( x , y ) = x 2 + y 2 = 1 g(x, y)=x^2+y^2=1 g ( x , y ) = x 2 + y 2 = 1 Using Lagrange multipliers,
f x = λ g x , f y = λ g y , g ( x , y ) = 1 f_x=\lambda g_x, f_y=\lambda g_y, g(x, y)=1 f x = λ g x , f y = λ g y , g ( x , y ) = 1 which become
2 x = 2 x λ 2x=2x\lambda 2 x = 2 x λ
1 = 2 y λ 1=2y\lambda 1 = 2 y λ
x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1 If x = 0 , x=0, x = 0 , then y 2 = 1 = > y = ± 1. y^2=1=>y=\pm1. y 2 = 1 => y = ± 1.
If λ = 1 , \lambda=1, λ = 1 , then y = 1 2 , y=\dfrac{1}{2}, y = 2 1 , and x = ± 3 2 x=\pm\dfrac{\sqrt{3}}{2} x = ± 2 3
Therefore f f f has possible extreme values at the points ( 0 , − 1 ) , ( 0 , 1 ) , ( − 3 2 , 1 2 ) , (0, -1), (0, 1),( -\dfrac{\sqrt{3}}{2}, \dfrac{1}{2}), ( 0 , − 1 ) , ( 0 , 1 ) , ( − 2 3 , 2 1 ) , and ( 3 2 , 1 2 ) . (\dfrac{\sqrt{3}}{2}, \dfrac{1}{2}). ( 2 3 , 2 1 ) . Evaluating f f f at these four points, we find that
f ( 0 , − 1 ) = − 1 f(0, -1)=-1 f ( 0 , − 1 ) = − 1
f ( 0 , 1 ) = 1 f(0, 1)=1 f ( 0 , 1 ) = 1
f ( − 3 2 , 1 2 ) = 5 4 f( -\dfrac{\sqrt{3}}{2}, \dfrac{1}{2})=\dfrac{5}{4} f ( − 2 3 , 2 1 ) = 4 5
f ( 3 2 , 1 2 ) = 5 4 f( \dfrac{\sqrt{3}}{2}, \dfrac{1}{2})=\dfrac{5}{4} f ( 2 3 , 2 1 ) = 4 5 Therefore the maximum value of f f f on the circle x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1 is
f ( ± 3 2 , 1 2 ) = 5 4 , f( \pm\dfrac{\sqrt{3}}{2}, \dfrac{1}{2})=\dfrac{5}{4}, f ( ± 2 3 , 2 1 ) = 4 5 ,
the minimum value of f f f on the circle x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1 is
f ( 0 , − 1 ) = − 1 f( 0,-1)=-1 f ( 0 , − 1 ) = − 1
Comments