# Answer on Calculus Question for Abhilash

Question #1939

Find h'(1) given that f(1) = -5, f '(1) = 2, g(1) = 3, and g'(1) = 2

h(x) = f(x)/g(x)

h'(1) =

h(x) = f(x)/g(x)

h'(1) =

Expert's answer

If h(x) = f(x)/g(x), then

h'(x) = {f'(x)g(x) - g'(x)f(x)}/g

Therefore

h'(1) = {f'(1)g(1) - g'(1)f(1)}/g

h'(x) = {f'(x)g(x) - g'(x)f(x)}/g

^{2}(x)Therefore

h'(1) = {f'(1)g(1) - g'(1)f(1)}/g

^{2}(1) = {2*3 - 2*(-5)}/3^{2}= 16/9Need a fast expert's response?

Submit orderand get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

## Comments

## Leave a comment