Solution:
1) We need to verify that ∫c(2y)dx + (3x)dy=\intop_c(2y)dx\;+\;(3x)dy=∫c(2y)dx+(3x)dy= ∬D(∂∂x(3x)−∂∂y(2y))dA\iint_D( \dfrac{∂}{∂x}(3x)-\dfrac{∂}{∂y}(2y) )dA∬D(∂x∂(3x)−∂y∂(2y))dA , where D denotes the region bounded by C.
x = cost
y = sin t
∫C2ydx+3xdy=∫0π2[2sint(−sint)+3cost cost]dt=π4\int_C2ydx+3xdy=\int^{ \tfrac{\pi}{2} }_0[2sint(-sint)+3cost\;cost]dt=\dfrac{\pi}{4}∫C2ydx+3xdy=∫02π[2sint(−sint)+3costcost]dt=4π
∬D(∂∂x(3x)−∂∂y(2y))dA=∬DdA=π4\iint_D( \dfrac{∂}{∂x}(3x)-\dfrac{∂}{∂y}(2y) )dA=\iint_DdA=\dfrac{\pi}{4}∬D(∂x∂(3x)−∂y∂(2y))dA=∬DdA=4π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments