Question #151183
∫ 2y dx + 3x dy
where d is describe by 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1
1
Expert's answer
2020-12-15T19:41:11-0500

Solution:


1) We need to verify that c(2y)dx  +  (3x)dy=\intop_c(2y)dx\;+\;(3x)dy= D(x(3x)y(2y))dA\iint_D( \dfrac{∂}{∂x}(3x)-\dfrac{∂}{∂y}(2y) )dA , where D denotes the region bounded by C.


x = cost

y = sin t


C2ydx+3xdy=0π2[2sint(sint)+3cost  cost]dt=π4\int_C2ydx+3xdy=\int^{ \tfrac{\pi}{2} }_0[2sint(-sint)+3cost\;cost]dt=\dfrac{\pi}{4}


D(x(3x)y(2y))dA=DdA=π4\iint_D( \dfrac{∂}{∂x}(3x)-\dfrac{∂}{∂y}(2y) )dA=\iint_DdA=\dfrac{\pi}{4}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS