The volume of solid obtained by rotation of the curve f(x)f(x)f(x) between x=ax=ax=a and x=bx=bx=b about the x-axis can be calculated as
V=π∫abf2(x) dxV = \pi \int\limits_a^bf^2(x)\,dxV=πa∫bf2(x)dx . In our case
V=π∫0π/12cos2x dx=π∫0π/121+cos(2x)2 dx=π∫0π/1212 dx+π∫0π/12cos(2x)2 dx=π224+π∫0π/6cosτ4 dτ=π224+π4sinτ∣0π/6=π224+π8.V = \pi \int\limits_0^{\pi/12}\cos^2 x\,dx = \pi \int\limits_{0}^{\pi/12}\dfrac{1+\cos(2x)}{2}\,dx = \pi \int\limits_{0}^{\pi/12}\dfrac12\,dx + \pi\int\limits_{0}^{\pi/12} \dfrac{\cos(2x)}{2}\,dx = \dfrac{\pi^2}{24} + \pi \int\limits_{0}^{\pi/6}\dfrac{\cos \tau}{4}\,d\tau = \dfrac{\pi^2}{24} + \dfrac{\pi}{4} \sin\tau\Big|_0^{\pi/6} = \dfrac{\pi^2}{24} +\dfrac{\pi}{8}.V=π0∫π/12cos2xdx=π0∫π/1221+cos(2x)dx=π0∫π/1221dx+π0∫π/122cos(2x)dx=24π2+π0∫π/64cosτdτ=24π2+4πsinτ∣∣0π/6=24π2+8π.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments