The parametric equation of the tangent, for t=t0 , to the line given parametrically r(t) has the form
rtan(t)=r(t0)+t⋅r′(t0)
or in coordinate form
rtan(t)=⎩⎨⎧xtan(t)=x(t0)+t⋅x′(t0)ytan(t)=y(t0)+t⋅y′(t0)ztan(t)=z(t0)+t⋅z′(t0)
In our case,
r(t)=e−t⋅⟨cost,sint,1⟩⟶r(0)=e0⋅⟨cos0,sin0,1⟩⟶r(0)=⟨1,0,1⟩r′(t)=−e−t⋅⟨cost,sint,1⟩+e−t⋅⟨−sint,cost,0⟩r′(0)=−e−0⋅⟨cos0,sin0,1⟩+e−0⋅⟨−sin0,cos0,0⟩==−1⋅⟨1,0,1⟩+1⋅⟨0,1,0⟩=⟨−1,1,−1⟩r′(0)=⟨−1,1,−1⟩
Then, The parametric equation of the tangent is
rtan(t)=⟨1,0,1⟩+t⋅⟨−1,1,−1⟩=⟨1−t,t,1−t⟩rtan(t)=⟨1−t,t,1−t⟩
or in coordinate form
rtan(t)=⎩⎨⎧xtan(t)=1−tytan(t)=tztan(t)=1−t
ANSWER
Vecotr form
rtan(t)=⟨1−t,t,1−t⟩
or in coordinate form
rtan(t)=⎩⎨⎧xtan(t)=1−tytan(t)=tztan(t)=1−t
Comments